浅谈为什么MySQL不建议delete删除数据

2022-05-21 0 330
目录
  • 前言
    • InnoDB存储架构
  • Innodb表空间
    • Inndob存储分布
      • 创建空表查看空间变化
      • 插入数据后的空间变化
      • delete数据后的空间变化
    • Innodb中的碎片
      • 碎片的产生
      • 碎片的回收
    • delete对SQL的影响
      • 未删除前的SQL执行情况
      • 删除后的SQL执行情况
    • delete优化建议
      • 控制业务账号权限
      • delete改为标记删除
    • 数据归档方式
      • 通用数据归档方法
      • 优化后的归档方式
    • 总结

      前言

      我负责的有几个系统随着业务量的增长,存储在MySQL中的数据日益剧增,我当时就想现在的业务方不讲武德,搞偷袭,趁我没反应过来把很多表,很快,很快啊都打到了亿级别,我大意了,没有闪,这就导致跟其Join的表的SQL变得很慢,对的应用接口的response time也变长了,影响了用户体验。

      事后我找到业务方,我批评了他们跟他们说要讲武德,连忙跟我道歉,这个事情才就此作罢,走的时候我对他们说下次不要这样了,耗子尾汁,好好反思。

      骂归骂,事情还是得解决,时候我分析原因发现,发现有些表的数据量增长很快,对应SQL扫描了很多无效数据,导致SQL慢了下来,通过确认之后,这些大表都是一些流水、记录、日志类型数据,只需要保留1到3个月,此时需要对表做数据清理实现瘦身,一般都会想到用insert + delete的方式去清理。

      这篇文章我会从InnoDB存储空间分布,delete对性能的影响,以及优化建议方面解释为什么不建议delete删除数据。

      InnoDB存储架构

      浅谈为什么MySQL不建议delete删除数据

      从这张图可以看到,InnoDB存储结构主要包括两部分:逻辑存储结构和物理存储结构。

      逻辑上是由表空间tablespace —>  段segment或者inode —> 区Extent ——>数据页Page构成,Innodb逻辑管理单位是segment,空间分配的最小单位是extent,每个segment都会从表空间FREE_PAGE中分配32个page,当这32个page不够用时,会按照以下原则进行扩展:如果当前小于1个extent,则扩展到1个extent;当表空间小于32MB时,每次扩展一个extent;表空间大于32MB,每次扩展4个extent。

      物理上主要由系统用户数据文件,日志文件组成,数据文件主要存储MySQL字典数据和用户数据,日志文件记录的是data page的变更记录,用于MySQL Crash时的恢复。

      Innodb表空间

      InnoDB存储包括三类表空间:系统表空间,用户表空间,Undo表空间。

      **系统表空间:**主要存储MySQL内部的数据字典数据,如information_schema下的数据。

      **用户表空间:**当开启innodb_file_per_table=1时,数据表从系统表空间独立出来存储在以table_name.ibd命令的数据文件中,结构信息存储在table_name.frm文件中。

      **Undo表空间:**存储Undo信息,如快照一致读和flashback都是利用undo信息。

      从MySQL 8.0开始允许用户自定义表空间,具体语法如下:

      CREATE TABLESPACE tablespace_name
        ADD DATAFILE 'file_name'        #数据文件名
        USE LOGFILE GROUP logfile_group    #自定义日志文件组,一般每组2个logfile。
        [EXTENT_SIZE [=] extent_size]     #区大小
        [INITIAL_SIZE [=] initial_size]    #初始化大小 
        [AUTOEXTEND_SIZE [=] autoextend_size] #自动扩宽尺寸
        [MAX_SIZE [=] max_size]        #单个文件最大size,最大是32G。
        [NODEGROUP [=] nodegroup_id]      #节点组
        [WAIT]
        [COMMENT [=] comment_text]
        ENGINE [=] engine_name
      

      这样的好处是可以做到数据的冷热分离,分别用HDD和SSD来存储,既能实现数据的高效访问,又能节约成本,比如可以添加两块500G硬盘,经过创建卷组vg,划分逻辑卷lv,创建数据目录并mount相应的lv,假设划分的两个目录分别是/hot_data 和 /cold_data。

      这样就可以将核心的业务表如用户表,订单表存储在高性能SSD盘上,一些日志,流水表存储在普通的HDD上,主要的操作步骤如下:

      #创建热数据表空间
      create tablespace tbs_data_hot add datafile '/hot_data/tbs_data_hot01.dbf' max_size 20G;
      #创建核心业务表存储在热数据表空间
      create table booking(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_hot;
      #创建冷数据表空间
      create tablespace tbs_data_cold add datafile '/hot_data/tbs_data_cold01.dbf' max_size 20G;
      #创建日志,流水,备份类的表存储在冷数据表空间
      create table payment_log(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_cold;
      #可以移动表到另一个表空间
      alter table payment_log tablespace tbs_data_hot;
      

      Inndob存储分布

      创建空表查看空间变化

      mysql> create table user(id bigint not null primary key auto_increment, 
        -> name varchar(20) not null default '' comment '姓名', 
        -> age tinyint not null default 0 comment 'age', 
        -> gender char(1) not null default 'M' comment '性别',
        -> phone varchar(16) not null default '' comment '手机号',
        -> create_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
        -> update_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
        -> ) engine = InnoDB DEFAULT CHARSET=utf8mb4 COMMENT '用户信息表';
      Query OK, 0 rows affected (0.26 sec)
      # ls -lh user1.ibd 
      -rw-r----- 1 mysql mysql 96K Nov 6 12:48 user.ibd
      
      

      设置参数innodb_file_per_table=1时,创建表时会自动创建一个segment,同时分配一个extent,包含32个data page的来存储数据,这样创建的空表默认大小就是96KB,extent使用完之后会申请64个连接页,这样对于一些小表,或者undo segment,可以在开始时申请较少的空间,节省磁盘容量的开销。

      # python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
      page offset 00000000, page type <File Space Header>
      page offset 00000001, page type <Insert Buffer Bitmap>
      page offset 00000002, page type <File Segment inode>
      page offset 00000003, page type <B-tree Node>, page level <0000>
      page offset 00000000, page type <Freshly Allocated Page>
      page offset 00000000, page type <Freshly Allocated Page>
      Total number of page: 6:   #总共分配的页数
      Freshly Allocated Page: 2   #可用的数据页
      Insert Buffer Bitmap: 1    #插入缓冲页
      File Space Header: 1     #文件空间头
      B-tree Node: 1        #数据页
      File Segment inode: 1     #文件端inonde,如果是在ibdata1.ibd上会有多个inode。
      

      插入数据后的空间变化

      mysql> DELIMITER $$
      mysql> CREATE PROCEDURE insert_user_data(num INTEGER) 
        -> BEGIN
        ->   DECLARE v_i int unsigned DEFAULT 0;
        -> set autocommit= 0;
        -> WHILE v_i < num DO
        ->  insert into user(`name`, age, gender, phone) values (CONCAT('lyn',v_i), mod(v_i,120), 'M', CONCAT('152',ROUND(RAND(1)*100000000)));
        -> SET v_i = v_i+1;
        -> END WHILE;
        -> commit;
        -> END $$
      Query OK, 0 rows affected (0.01 sec)
      mysql> DELIMITER ;
      
      #插入10w数据
      mysql> call insert_user_data(100000);
      Query OK, 0 rows affected (6.69 sec)
      
      # ls -lh user.ibd
      -rw-r----- 1 mysql mysql 14M Nov 6 10:58 /data2/mysql/test/user.ibd
      
      # python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
      page offset 00000000, page type <File Space Header>
      page offset 00000001, page type <Insert Buffer Bitmap>
      page offset 00000002, page type <File Segment inode>
      page offset 00000003, page type <B-tree Node>, page level <0001>  #增加了一个非叶子节点,树的高度从1变为2.
      ........................................................
      page offset 00000000, page type <Freshly Allocated Page>
      Total number of page: 896:
      Freshly Allocated Page: 493
      Insert Buffer Bitmap: 1
      File Space Header: 1
      B-tree Node: 400
      File Segment inode: 1

      delete数据后的空间变化

      mysql> select min(id),max(id),count(*) from user;
      +---------+---------+----------+
      | min(id) | max(id) | count(*) |
      +---------+---------+----------+
      |    1 | 100000 |  100000 |
      +---------+---------+----------+
      1 row in set (0.05 sec)
      #删除50000条数据,理论上空间应该从14MB变长7MB左右。
      mysql> delete from user limit 50000;
      Query OK, 50000 rows affected (0.25 sec)
      
       
      #数据文件大小依然是14MB,没有缩小。
      # ls -lh /data2/mysql/test/user1.ibd 
      -rw-r----- 1 mysql mysql 14M Nov 6 13:22 /data2/mysql/test/user.ibd
      
      #数据页没有被回收。
      # python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
      page offset 00000000, page type <File Space Header>
      page offset 00000001, page type <Insert Buffer Bitmap>
      page offset 00000002, page type <File Segment inode>
      page offset 00000003, page type <B-tree Node>, page level <0001>
      ........................................................
      page offset 00000000, page type <Freshly Allocated Page>
      Total number of page: 896:
      Freshly Allocated Page: 493
      Insert Buffer Bitmap: 1
      File Space Header: 1
      B-tree Node: 400
      File Segment inode: 1
      #在MySQL内部是标记删除,
      
      mysql> use information_schema;
      
      Database changed
      mysql> SELECT A.SPACE AS TBL_SPACEID, A.TABLE_ID, A.NAME AS TABLE_NAME, FILE_FORMAT, ROW_FORMAT, SPACE_TYPE, B.INDEX_ID , B.NAME AS INDEX_NAME, PAGE_NO, B.TYPE AS INDEX_TYPE FROM INNODB_SYS_TABLES A LEFT JOIN INNODB_SYS_INDEXES B ON A.TABLE_ID =B.TABLE_ID WHERE A.NAME = 'test/user1';
      +-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
      | TBL_SPACEID | TABLE_ID | TABLE_NAME | FILE_FORMAT | ROW_FORMAT | SPACE_TYPE | INDEX_ID | INDEX_NAME | PAGE_NO | INDEX_TYPE |
      +-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
      |    1283 |   1207 | test/user | Barracuda  | Dynamic  | Single   |   2236 | PRIMARY  |    3 |     3 |
      +-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
      1 row in set (0.01 sec)
      
      PAGE_NO = 3 标识B-tree的root page是3号页,INDEX_TYPE = 3是聚集索引。 INDEX_TYPE取值如下:
      0 = nonunique secondary index; 
      1 = automatically generated clustered index (GEN_CLUST_INDEX); 
      2 = unique nonclustered index; 
      3 = clustered index; 
      32 = full-text index;
      #收缩空间再后进行观察
      
      

      MySQL内部不会真正删除空间,而且做标记删除,即将delflag:N修改为delflag:Y,commit之后会会被purge进入删除链表,如果下一次insert更大的记录,delete之后的空间不会被重用,如果插入的记录小于等于delete的记录空会被重用,这块内容可以通过知数堂的innblock工具进行分析。

      Innodb中的碎片

      碎片的产生

      我们知道数据存储在文件系统上的,总是不能100%利用分配给它的物理空间,删除数据会在页面上留下一些”空洞”,或者随机写入(聚集索引非线性增加)会导致页分裂,页分裂导致页面的利用空间少于50%,另外对表进行增删改会引起对应的二级索引值的随机的增删改,也会导致索引结构中的数据页面上留下一些”空洞”,虽然这些空洞有可能会被重复利用,但终究会导致部分物理空间未被使用,也就是碎片。

      同时,即便是设置了填充因子为100%,Innodb也会主动留下page页面1/16的空间作为预留使用(An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future index growth)防止update带来的行溢出。

      mysql> select table_schema,
        ->    table_name,ENGINE,
        ->    round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,
        ->    round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio
        -> from information_schema.TABLES where TABLE_SCHEMA= 'test'
        -> and TABLE_NAME= 'user';
      +--------------+------------+--------+----------+------------+---------+----------+---------+------------+
      | table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
      +--------------+------------+--------+----------+------------+---------+----------+---------+------------+
      | test     | user   | InnoDB |    4 |   50000 |    4 |    0 |    6 |   149.42 |
      +--------------+------------+--------+----------+------------+---------+----------+---------+------------+
      1 row in set (0.00 sec)

      其中data_free是分配了未使用的字节数,并不能说明完全是碎片空间。

      碎片的回收

      对于InnoDB的表,可以通过以下命令来回收碎片,释放空间,这个是随机读IO操作,会比较耗时,也会阻塞表上正常的DML运行,同时需要占用额外更多的磁盘空间,对于RDS来说,可能会导致磁盘空间瞬间爆满,实例瞬间被锁定,应用无法做DML操作,所以禁止在线上环境去执行。

      #执行InnoDB的碎片回收
      mysql> alter table user engine=InnoDB;
      Query OK, 0 rows affected (9.00 sec)
      Records: 0 Duplicates: 0 Warnings: 0
      
      ##执行完之后,数据文件大小从14MB降低到10M。
      # ls -lh /data2/mysql/test/user1.ibd 
      -rw-r----- 1 mysql mysql 10M Nov 6 16:18 /data2/mysql/test/user.ibd
      
      
      mysql> select table_schema,    table_name,ENGINE,    round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,    round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio from information_schema.TABLES where TABLE_SCHEMA= 'test' and TABLE_NAME= 'user';
      +--------------+------------+--------+----------+------------+---------+----------+---------+------------+
      | table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
      +--------------+------------+--------+----------+------------+---------+----------+---------+------------+
      | test     | user   | InnoDB |    5 |   50000 |    5 |    0 |    2 |   44.29 |
      +--------------+------------+--------+----------+------------+---------+----------+---------+------------+
      1 row in set (0.00 sec)
      
      

      delete对SQL的影响

      未删除前的SQL执行情况

      #插入100W数据
      mysql> call insert_user_data(1000000);
      Query OK, 0 rows affected (35.99 sec)
      
      #添加相关索引
      mysql> alter table user add index idx_name(name), add index idx_phone(phone);
      Query OK, 0 rows affected (6.00 sec)
      Records: 0 Duplicates: 0 Warnings: 0
      
      #表上索引统计信息
      mysql> show index from user;
      +-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
      | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
      +-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
      | user |     0 | PRIMARY  |      1 | id     | A     |   996757 |   NULL | NULL  |   | BTREE   |     |        |
      | user |     1 | idx_name |      1 | name    | A     |   996757 |   NULL | NULL  |   | BTREE   |     |        |
      | user |     1 | idx_phone |      1 | phone    | A     |      2 |   NULL | NULL  |   | BTREE   |     |        |
      +-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
      3 rows in set (0.00 sec)
      
      #重置状态变量计数
      mysql> flush status;
      Query OK, 0 rows affected (0.00 sec)
      
      #执行SQL语句
      mysql> select id, age ,phone from user where name like 'lyn12%';
      +--------+-----+-------------+
      | id   | age | phone    |
      +--------+-----+-------------+
      |  124 |  3 | 15240540354 |
      |  1231 | 30 | 15240540354 |
      | 12301 | 60 | 15240540354 |
      .............................
      | 129998 | 37 | 15240540354 |
      | 129999 | 38 | 15240540354 |
      | 130000 | 39 | 15240540354 |
      +--------+-----+-------------+
      11111 rows in set (0.03 sec)
      
      mysql> explain select id, age ,phone from user where name like 'lyn12%';
      +----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
      | id | select_type | table | type | possible_keys | key   | key_len | ref | rows | Extra         |
      +----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
      | 1 | SIMPLE   | user | range | idx_name   | idx_name | 82   | NULL | 22226 | Using index condition |
      +----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
      1 row in set (0.00 sec)
      
      #查看相关状态呢变量
      mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');
      +-------------------+----------------+
      | VARIABLE_NAME   | VARIABLE_VALUE |
      +-------------------+----------------+
      | HANDLER_READ_NEXT | 11111     |  #请求读的行数
      | INNODB_DATA_READS | 7868409    |  #数据物理读的总数
      | INNODB_PAGES_READ | 7855239    |  #逻辑读的总数
      | LAST_QUERY_COST  | 10.499000   |  #SQL语句的成本COST,主要包括IO_COST和CPU_COST。
      +-------------------+----------------+
      4 rows in set (0.00 sec)
      
      

      删除后的SQL执行情况

      #删除50w数据
      mysql> delete from user limit 500000;
      Query OK, 500000 rows affected (3.70 sec)
      
      #分析表统计信息
      mysql> analyze table user;
      +-----------+---------+----------+----------+
      | Table   | Op   | Msg_type | Msg_text |
      +-----------+---------+----------+----------+
      | test.user | analyze | status  | OK    |
      +-----------+---------+----------+----------+
      1 row in set (0.01 sec)
      
      #重置状态变量计数
      mysql> flush status;
      Query OK, 0 rows affected (0.01 sec)
      
      mysql> select id, age ,phone from user where name like 'lyn12%';
      Empty set (0.05 sec)
      
      mysql> explain select id, age ,phone from user where name like 'lyn12%';
      +----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
      | id | select_type | table | type | possible_keys | key   | key_len | ref | rows | Extra         |
      +----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
      | 1 | SIMPLE   | user | range | idx_name   | idx_name | 82   | NULL | 22226 | Using index condition |
      +----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
      1 row in set (0.00 sec)
      
      mysql> select * from information_schema.session_status where variable_name in('Last_query_cost','Handler_read_next','Innodb_pages_read','Innodb_data_reads','Innodb_pages_read');
      +-------------------+----------------+
      | VARIABLE_NAME   | VARIABLE_VALUE |
      +-------------------+----------------+
      | HANDLER_READ_NEXT | 0       |
      | INNODB_DATA_READS | 7868409    |
      | INNODB_PAGES_READ | 7855239    |
      | LAST_QUERY_COST  | 10.499000   |
      +-------------------+----------------+
      4 rows in set (0.00 sec)
      
      

      结果统计分析

      操作 COST 物理读次数 逻辑读次数 扫描行数 返回行数 执行时间
      初始化插入100W 10.499000 7868409 7855239 22226 11111 30ms
      100W随机删除50W 10.499000 7868409 7855239 22226 0 50ms

      这也说明对普通的大表,想要通过delete数据来对表进行瘦身是不现实的,所以在任何时候不要用delete去删除数据,应该使用优雅的标记删除。

      delete优化建议

      控制业务账号权限

      对于一个大的系统来说,需要根据业务特点去拆分子系统,每个子系统可以看做是一个service,例如美团APP,上面有很多服务,核心的服务有用户服务user-service,搜索服务search-service,商品product-service,位置服务location-service,价格服务price-service等。每个服务对应一个数据库,为该数据库创建单独账号,同时只授予DML权限且没有delete权限,同时禁止跨库访问。

      #创建用户数据库并授权
      create database mt_user charset utf8mb4;
      grant USAGE, SELECT, INSERT, UPDATE ON mt_user.* to 'w_user'@'%' identified by 't$W*g@gaHTGi123456';
      flush privileges;
      

      delete改为标记删除

      在MySQL数据库建模规范中有4个公共字段,基本上每个表必须有的,同时在create_time列要创建索引,有两方面的好处:

      • 一些查询业务场景都会有一个默认的时间段,比如7天或者一个月,都是通过create_time去过滤,走索引扫描更快。
      • 一些核心的业务表需要以T +1的方式抽取数据仓库中,比如每天晚上00:30抽取前一天的数据,都是通过create_time过滤的。
      `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键id',
      `is_deleted` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否逻辑删除:0:未删除,1:已删除',
      `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
      `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
      
      #有了删除标记,业务接口的delete操作就可以转换为update
      update user set is_deleted = 1 where user_id = 1213;
      
      #查询的时候需要带上is_deleted过滤
      select id, age ,phone from user where is_deleted = 0 and name like 'lyn12%';
      
      

      数据归档方式

      通用数据归档方法

      #1. 创建归档表,一般在原表名后面添加_bak。
      CREATE TABLE `ota_order_bak` (
       `id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT '主键',
       `order_id` varchar(255) DEFAULT NULL COMMENT '订单id',
       `ota_id` varchar(255) DEFAULT NULL COMMENT 'ota',
       `check_in_date` varchar(255) DEFAULT NULL COMMENT '入住日期',
       `check_out_date` varchar(255) DEFAULT NULL COMMENT '离店日期',
       `hotel_id` varchar(255) DEFAULT NULL COMMENT '酒店ID',
       `guest_name` varchar(255) DEFAULT NULL COMMENT '顾客',
       `purcharse_time` timestamp NULL DEFAULT NULL COMMENT '购买时间',
       `create_time` datetime DEFAULT NULL,
       `update_time` datetime DEFAULT NULL,
       `create_user` varchar(255) DEFAULT NULL,
       `update_user` varchar(255) DEFAULT NULL,
       `status` int(4) DEFAULT '1' COMMENT '状态 : 1 正常 , 0 删除',
       `hotel_name` varchar(255) DEFAULT NULL,
       `price` decimal(10,0) DEFAULT NULL,
       `remark` longtext,
       PRIMARY KEY (`id`),
       KEY `IDX_order_id` (`order_id`) USING BTREE,
       KEY `hotel_name` (`hotel_name`) USING BTREE,
       KEY `ota_id` (`ota_id`) USING BTREE,
       KEY `IDX_purcharse_time` (`purcharse_time`) USING BTREE,
       KEY `IDX_create_time` (`create_time`) USING BTREE
      ) ENGINE=InnoDB DEFAULT CHARSET=utf8
      PARTITION BY RANGE (to_days(create_time)) ( 
      PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')), 
      PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')), 
      PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')), 
      PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')), 
      PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')), 
      PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')), 
      PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')), 
      PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')), 
      PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')), 
      PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')), 
      PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')), 
      PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')), 
      PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')), 
      PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')), 
      PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')), 
      PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')), 
      PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));
      
      #2. 插入原表中无效的数据(需要跟开发同学确认数据保留范围)
      create table tbl_p201808 as select * from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59';
      
      #3. 跟归档表分区做分区交换
      alter table ota_order_bak exchange partition p201808 with table tbl_p201808;
      
      #4. 删除原表中已经规范的数据
      delete from ota_order where create_time between '2018-08-01 00:00:00' and '2018-08-31 23:59:59' limit 3000;
      

      优化后的归档方式

      #1. 创建中间表
      CREATE TABLE `ota_order_2020` (........) ENGINE=InnoDB DEFAULT CHARSET=utf8
      PARTITION BY RANGE (to_days(create_time)) ( 
      PARTITION p201808 VALUES LESS THAN (to_days('2018-09-01')), 
      PARTITION p201809 VALUES LESS THAN (to_days('2018-10-01')), 
      PARTITION p201810 VALUES LESS THAN (to_days('2018-11-01')), 
      PARTITION p201811 VALUES LESS THAN (to_days('2018-12-01')), 
      PARTITION p201812 VALUES LESS THAN (to_days('2019-01-01')), 
      PARTITION p201901 VALUES LESS THAN (to_days('2019-02-01')), 
      PARTITION p201902 VALUES LESS THAN (to_days('2019-03-01')), 
      PARTITION p201903 VALUES LESS THAN (to_days('2019-04-01')), 
      PARTITION p201904 VALUES LESS THAN (to_days('2019-05-01')), 
      PARTITION p201905 VALUES LESS THAN (to_days('2019-06-01')), 
      PARTITION p201906 VALUES LESS THAN (to_days('2019-07-01')), 
      PARTITION p201907 VALUES LESS THAN (to_days('2019-08-01')), 
      PARTITION p201908 VALUES LESS THAN (to_days('2019-09-01')), 
      PARTITION p201909 VALUES LESS THAN (to_days('2019-10-01')), 
      PARTITION p201910 VALUES LESS THAN (to_days('2019-11-01')), 
      PARTITION p201911 VALUES LESS THAN (to_days('2019-12-01')), 
      PARTITION p201912 VALUES LESS THAN (to_days('2020-01-01')));
      
      #2. 插入原表中有效的数据,如果数据量在100W左右可以在业务低峰期直接插入,如果比较大,建议采用dataX来做,可以控制频率和大小,之前我这边用Go封装了dataX可以实现自动生成json文件,自定义大小去执行。
      insert into ota_order_2020 select * from ota_order where create_time between '2020-08-01 00:00:00' and '2020-08-31 23:59:59';
      
      #3. 表重命名
      alter table ota_order rename to ota_order_bak; 
      alter table ota_order_2020 rename to ota_order;
      #4. 插入差异数据
      insert into ota_order select * from ota_order_bak a where not exists (select 1 from ota_order b where a.id = b.id);
      #5. ota_order_bak改造成分区表,如果表比较大不建议直接改造,可以先创建好分区表,通过dataX把导入进去即可。
      
      #6. 后续的归档方法
      #创建中间普遍表
      create table ota_order_mid like ota_order;
      #交换原表无效数据分区到普通表
      alter table ota_order exchange partition p201808 with table ota_order_mid; 
      ##交换普通表数据到归档表的相应分区
      alter table ota_order_bak exchange partition p201808 with table ota_order_mid;
      
      

      这样原表和归档表都是按月的分区表,只需要创建一个中间普通表,在业务低峰期做两次分区交换,既可以删除无效数据,又能回收空,而且没有空间碎片,不会影响表上的索引及SQL的执行计划。

      总结

      通过从InnoDB存储空间分布,delete对性能的影响可以看到,delete物理删除既不能释放磁盘空间,而且会产生大量的碎片,导致索引频繁分裂,影响SQL执行计划的稳定性;

      同时在碎片回收时,会耗用大量的CPU,磁盘空间,影响表上正常的DML操作。

      在业务代码层面,应该做逻辑标记删除,避免物理删除;为了实现数据归档需求,可以用采用MySQL分区表特性来实现,都是DDL操作,没有碎片产生。

      另外一个比较好的方案采用Clickhouse,对有生命周期的数据表可以使用Clickhouse存储,利用其TTL特性实现无效数据自动清理。

      到此这篇关于浅谈为什么MySQL不建议delete删除数据的文章就介绍到这了,更多相关MySQL不建议delete删除内容请搜索NICE源码以前的文章或继续浏览下面的相关文章希望大家以后多多支持NICE源码!

      免责声明:
      1、本网站所有发布的源码、软件和资料均为收集各大资源网站整理而来;仅限用于学习和研究目的,您必须在下载后的24个小时之内,从您的电脑中彻底删除上述内容。 不得使用于非法商业用途,不得违反国家法律。否则后果自负!

      2、本站信息来自网络,版权争议与本站无关。一切关于该资源商业行为与www.niceym.com无关。
      如果您喜欢该程序,请支持正版源码、软件,购买注册,得到更好的正版服务。
      如有侵犯你版权的,请邮件与我们联系处理(邮箱:skknet@qq.com),本站将立即改正。

      NICE源码网 MySql 浅谈为什么MySQL不建议delete删除数据 https://www.niceym.com/42630.html